New Mechanistic Evidence on the Reaction between Sulfonylallenes and Nitrile Oxides

Gianluigi Broggini, Giorgio Molteni, and Gaetano Zecchi*
Dipartimento di Chimica Organica e Industriale dell'Università, Via Golgi 19, 20133 Milano, Italy

Received July 25, 1994
The use of allenes as dipolarophiles is receiving growing attention due to some advantages, the most important of which is that the resulting cycloadducts are versatile intermediates for synthetic purposes. ${ }^{1-6}$ However, the dipolarophilic reactivity of the allene moiety is intrinsically modest in the absence of proper activating substituents. Among them, the sulfonyl group occupies a prominent position owing to the following features: (i) it enhances the reactivity of the cumulated double bonds, ${ }^{7}$ (ii) it facilitates the further functionalization of the cycloadducts, ${ }^{8}$ and (iii) it can be easily removed in the final stage of the synthetic sequence. ${ }^{9}$ For these reasons, 1 -(phenylsulfonyl)- 1,2 -propadiene has been advanced as the synthetic equivalent of the unreactive 1,2 -propadiene. ${ }^{10}$
Examples of nitrile oxide cycloadditions to sulfonylsubstituted allenes have been reported independently by two research groups, ${ }^{7,11}$ both of which found a disappointing degree of site selectivity and regioselectivity in contrast to the prediction of CNDO computations. ${ }^{10}$ To accommodate this discrepancy, the American research group ${ }^{7}$ has proposed a reaction pathway involving cycloaddition across the α, β double bond and subsequent 1,3 -shift of the sulfonyl moiety, thus simulating a $\beta, \gamma-$ cycloaddition (Scheme 1).
We now wish to report new results on the same subject, which confirm the previously observed trend but are not consistant with Padwa's mechanistic picture. To improve the interest of our work for synthesis, we have chosen the sulfonylallenes $4 \mathbf{a}, \mathbf{b}$, which would have given compounds containing a masked amino group.
The desired allenes $\mathbf{4 a , b}$ were synthesized through the sequence outlined in Scheme 2. Compounds 4a,b were

[^0]
Scheme 1

PhCNO $\quad+\quad \mathrm{PhSO}_{2}-\stackrel{\alpha}{\mathrm{C}} \mathrm{H}=\stackrel{\beta}{\mathrm{C}}=\stackrel{\gamma}{\mathrm{C}} \mathrm{H}_{2}$

Scheme 2 ${ }^{a}$

${ }^{a} \mathbf{a} ; \mathrm{R}=\mathrm{H} ; \mathrm{b} ; \mathrm{R}=\mathrm{Me}$.
reacted with 3,5-dichloro-2,4,6-trimethylbenzonitrile oxide (5) in boiling tetrachloromethane by using different proportions of the reactants (see Scheme 3). Reaction times, products, and yields are summarized in Table 1.

The distinction between the regioisomeric formulae 7 and 8 was easily made on the basis of the chemical shifts of the isoxazolinic protons, while the structures 6 and 11 were assigned upon examination of the literature data dealing with ${ }^{1} \mathrm{H}$ NMR of 5 -methylisoxazoles. ${ }^{12}$ Moreover, both 6 and 11 were obtained independently by cycloaddition of 5 to α-sulfonyl ketone 13 and 2 -butyn-1-ol, respectively.
The diadduct structural assignments 9 and 10 rely upon analytical and spectral data, including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The depicted stereochemistry, although not proven with full certainty, is plausible in light of that found for similar spirobi(4,5 -dihydroisoxazoles) by ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling constant correlation ${ }^{13}$ and X-ray analysis. ${ }^{5 a}$ The unusùal structure 10 was chemically confirmed by base-promoted fragmentation to give a mixture of 14 and 15.
The above results support two mechanistic conclusions. First, the β, γ-cycloadducts 7 cannot be ascribed to the

[^1]Scheme 3

Table 1. Reaction of Nitrile Oxide 5 with Allenes 4^{a}

R	molar equiv of 5	time (h)	products and yields (\%) ${ }^{\text {b }}$						$\begin{gathered} \alpha, \beta: \beta, \gamma, \gamma \\ \text { ratio } \end{gathered}$
			6	7	8	9	10	11	
H	$1{ }^{\text {c }}$	32	14	22	26	10			33:67
	2	24	11	29	25	8	1		26:74
	4	18	9	37	10	8	14		22:78
Me	$1{ }^{\text {c }}$	48		39		6		$5^{\text {d }}$	22:78
	2	24		49		13			21:79
	4	12		56		19			35:75

${ }^{a}$ In boiling tetrachloromethane. ${ }^{b}$ Isolated yield of pure compounds. ${ }^{\text {c }}$ Some allene was recovered ($10-12 \%$). ${ }^{d}$ The corresponding quantity of arenesulfinic acid 12 was also obtained. ${ }^{e}$ In light of the mechanistic conclusions given in the text.
primary formation of (B) and subsequent 1,3-shift of the sulfonyl group because such a process would have given 3-aryl-4-methyl-5-((arylsulfonyl)methyl)isoxazole in place of the observed 3 -aryl-5-(1-(arylsulfonyl)ethyl)isoxazole 7b. Second, the formation of diadduct 10 is facilitated by an excess of nitrile oxide at the expense of monoadduct 8 , thus suggesting that 10 and 8 arise from a common precursor via two concurrent reactions of different kinetic order; the first-formed β, γ-cycloadduct (\mathbf{D}) is the reasonable candidate for this role.

In conclusion, the present work demonstrates that (i) both of the cumulated double bonds of sulfonylallenes are reactive toward nitrile oxides and (ii) the regiochemical course for each site of cycloaddition follows from an interplay of steric and electronic factors. Since such evidence does not agree with the prediction based on the frontier orbital properties of 1-(methylsulfonyl)-1,2-propadiene, ${ }^{10}$ it must be inferred that the FMO model is inadequate for the reaction under study, similarly to what has previously been found for nitrile oxide cycloadditions to sulfonylethylenes. ${ }^{14,15}$ Searching for a rationalization of the observed results, one may tentatively consider two suggestions: (1) the subtle electronic effect of the sulfonyl group (which has been shown to include inductive, conjugative, and hyperconjugative components $)^{16-18}$ could markedly affect both α, β and β, γ double bonds of the allene; (2) due to the nonplanar geometry of the system under study, secondary orbital

[^2]interactions could be operative to enhancing the reactivity of the β, γ double bond. In this context, the dipolarophilic behavior of 1,1 -difluoroallene is mentioned as a significant case of β, γ-activation. ${ }^{6}$

Experimental Section

Melting points are not corrected. Analytical and spectroscopic instruments were as described in detail in a recent paper. ${ }^{5 \mathrm{c}}$

Compounds $1 a^{19}$ and 5^{20} were prepared according to the literature methods.

3-((2-Aminophenyl)thio)butyne (1b). A mixture of sodium 2 -aminothiophenoxide ($2.35 \mathrm{~g}, 15.7 \mathrm{mmol}$) and 3 -bromobut-1yne ${ }^{21}(2.0 \mathrm{~g}, 15.0 \mathrm{mmol})$ in EtOH (40 mL) was stirred under nitrogen for 4 h . The solvent was evaporated under reduced pressure, and the residue was poured in water (40 mL) and extracted with CHCl_{3}. The organic layer was washed with a 4% aqueous solution of NaOH , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give $1.90 \mathrm{~g}(72 \%)$ of 1 b . $\mathrm{Bp}: 125-130^{\circ} \mathrm{C}(0.2 \mathrm{mmHg})$. ${ }^{1}{ }^{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.48(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{d}, J=$ $2.4 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dq}, J=7.0,2.4 \mathrm{~Hz}), 4.40(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.60-$ $6.80(2 \mathrm{H}, \mathrm{m}), 7.10-7.20(1 \mathrm{H}, \mathrm{m}), 7.40-7.50(1 \mathrm{H}, \mathrm{m})$. IR (Nujol) $3350-3490 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NS}: \mathrm{C}, 67.76 ; \mathrm{H}, 7.90$; N, 24.83; S, 18.09. Found: C, 67.70; H, 7.81; N, 24.72; S, 17.90.

3-((2-(Acetylamino)phenyl)thio)propyne (2a). A solution of $1 \mathrm{a}(2.12 \mathrm{~g}, 13.0 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(1.40 \mathrm{~g}, 13.7 \mathrm{mmol})$ in AcOH $(10 \mathrm{~mL})$ was refluxed for 20 min . The mixture was poured in water (60 mL), and the precipitate was filtered to give 1.80 g (68%) of $\mathbf{2 a} . \mathrm{Mp}: 73^{\circ} \mathrm{C}($ from EtOH$) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta: 2.27$ $(3 \mathrm{H}, \mathrm{s}), 2.32(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 3.42(2 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.02-$ $7.10(1 \mathrm{H}, \mathrm{m}), 7.32-7.48(1 \mathrm{H}, \mathrm{m}), 7.53-7.58(1 \mathrm{H}, \mathrm{m}), 8.38-8.42$ ($1 \mathrm{H}, \mathrm{m}$), 8.54 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$). IR (Nujol) $3200,2100,1630 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11}$ NOS: $\mathrm{C}, 64.36 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.82 ; \mathrm{S}, 15.62$. Found: C, 64.20 ; H, 5.46 ; N, 6.71; S, 15.50 .

3-((2-Acetylamino)phenyl)thio)butyne (2b). A solution of $1 \mathrm{~b}(2.00 \mathrm{~g}, 11.3 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(1.28 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{AcOH}(6$ mL) was refluxed for 20 min . The mixture was poured in water $(80 \mathrm{~mL})$, and the precipitate was filtered to give $1.43 \mathrm{~g}(58 \%)$ of $\mathbf{2 b}$. Mp : $81{ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ : $1.48(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 2.20(3 \mathrm{H}, \mathrm{s}), 2.35(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$, $3.69(1 \mathrm{H}, \mathrm{dq}, J=7.0,2.4 \mathrm{~Hz}), 6.95-7.10(1 \mathrm{H}, \mathrm{m}), 7.27-7.35$ $(1 \mathrm{H}, \mathrm{m}), 7.50-7.60(1 \mathrm{H}, \mathrm{m}), 8.32-8.45(1 \mathrm{H}, \mathrm{m}), 8.63(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. IR (Nujol) $3180,2110,1640 \mathrm{~cm}^{-1}$. Anal. Caled for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOS}$: C, 65.72; H, 5.98; N, 6.39; S, 14.62. Found: C, 65.60; H, 6.11; N, 6.46; S, 14.71 .

3[(2-(Acetylamino)phenyl)sulfonyl]propyne (3a). A mixture of $2 \mathrm{a}(5.03 \mathrm{~g}, 24.5 \mathrm{mmol}), 30 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(51.0 \mathrm{~g}, 0.45$ $\mathrm{mol})$, and $\mathrm{AcOH}(200 \mathrm{~mL})$ was warmed to $45^{\circ} \mathrm{C}$ for 5 h . The mixture was poured in water/ice (500 mL), and NaHSO_{3} was added until the excess of oxidant was completely removed. The precipitate was filtered to give $3.50 \mathrm{~g}(60 \%)$ of $3 \mathrm{a} . \mathrm{Mp}: 137{ }^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.20(3 \mathrm{H}, \mathrm{s}), 2.35(1 \mathrm{H}, \mathrm{t}, J=$ $2.8 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 7.15-7.28(1 \mathrm{H}, \mathrm{m}), 7.58-7.70$ $(1 \mathrm{H}, \mathrm{m}), 7.85-7.93(1 \mathrm{H}, \mathrm{m}), 8.45-8.55(1 \mathrm{H}, \mathrm{m}), 9.62(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. IR (Nujol) 3310, 2120, $1660 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11^{-}}$ $\mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 55.68 ; \mathrm{H}, 4.67$; N, 5.90 ; S, 13.51. Found: C, 55.79; H, 4.61; N, 5.94; S, 13.39.

3-[(2-(Acetylamino)phenyl)sulfonyl]butyne (3b). A mixture of $\mathbf{2 b}(3.00 \mathrm{~g}, 13.7 \mathrm{mmol}), 30 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(34.0 \mathrm{~g}, 0.30$ $\mathrm{mol})$, and $\mathrm{AcOH}(110 \mathrm{~mL})$ was warmed to $45^{\circ} \mathrm{C}$ for 5.5 h . The mixture was poured in water/ice (400 mL), and NaHSO_{3} was added until the excess of oxidant was completely removed. The solvent was evaporated under reduced pressure, and the residue was taken up with water (80 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

[^3]The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give $2.70 \mathrm{~g}(79 \%)$ of 3 b . Mp: $149{ }^{\circ} \mathrm{C}$ (from diisopropyl ether). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.57(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$, $2.18(3 \mathrm{H}, \mathrm{s}), 2.40(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dq}, J=7.0,2.8$ $\mathrm{Hz}), 7.10-7.25(1 \mathrm{H}, \mathrm{m}), 7.55-7.68(1 \mathrm{H}, \mathrm{m}), 7.75-7.90(1 \mathrm{H}, \mathrm{m})$, $8.45-8.55(1 \mathrm{H}, \mathrm{m}), 9.75(1 \mathrm{H}, \mathrm{br}$ s). IR (Nujol) 3300, 2110, 1660 cm^{-1}. Anal. Caled for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$: C, $57.35 ; \mathrm{H}, 5.21 ; \mathrm{N}, 5.57$; S, 12.76. Found: C, $57.23 ; \mathrm{H}, 5.10 ; \mathrm{N}, 5.42$; S, 12.85 .

1-[(2-(Acetylamino)phenyl)sulfonyl]-1,2-propadiene (4a). A solution of $3 \mathbf{a}(2.50 \mathrm{~g}, 10.5 \mathrm{mmol})$ in benzene (200 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.06 \mathrm{~g}, 10.5 \mathrm{mmol})$ and refluxed for 20 min . The evaporation of the solvent gave $2.27 \mathrm{~g}(91 \%)$ of 4 a . Mp: 90 ${ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.22(3 \mathrm{H}, \mathrm{s})$, $5.47(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 7.10-7.14$ $(1 \mathrm{H}, \mathrm{m}), 7.50-7.80(1 \mathrm{H}, \mathrm{m}), 7.80-8.10(2 \mathrm{H}, \mathrm{m}), 9.40(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 25.0(\mathrm{q}), 84.5(\mathrm{t}), 100.2(\mathrm{~d}), 120.8-136.8$, 168.5 (s), 209.5 (s). IR (Nujol) $3370,1950,1690 \mathrm{~cm}^{-1}$. MS m/e: 237 (M). Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 55.68 ; \mathrm{H}, 4.67$; N, 5.90 ; S, 13.51. Found: C, 55.49; H, 4.60; N, 5.74; S, 13.40.

3-[(2-(Acetylamino)phenyl)sulfonyl]-1,2-butadiene (4b). A solution of $\mathbf{3 b}(2.01 \mathrm{~g}, 8.0 \mathrm{mmol})$ in benzene (160 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(8.08 \mathrm{~g}, 80.0 \mathrm{mmol})$ and stirred at room temperature for 20 min . The evaporation of the solvent gave $1.81 \mathrm{~g}(90 \%)$ of $4 \mathrm{~b} . \mathrm{Mp}: 66^{\circ} \mathrm{C}$ (from disopropyl ether). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.88(3 \mathrm{H}, \mathrm{t}, J=3.3 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}), 5.33(2 \mathrm{H}, \mathrm{q}, J$ $=3.3 \mathrm{~Hz}), 7.16-7.24(1 \mathrm{H}, \mathrm{m}), 7.55-7.62(1 \mathrm{H}, \mathrm{m}), 7.82-7.87(1 \mathrm{H}$, $\mathrm{m}), 8.40-8.45(1 \mathrm{H}, \mathrm{m}), 9.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 13.0$ (q), 25.2 (q), 83.4 (t), $120.5-136.8,168.0$ (s), 207.8 (s). IR (Nujol) 3340, 1940, $1710 \mathrm{~cm}^{-1}$. MS mie: 251 (M). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 57.35 ; \mathrm{H}, 5.21 ; \mathrm{N}, 5.57$; S, 12.76. Found: C, 57.20; H, 5.10; N, 5.65; S, 12.88 .

Reaction of 5 with Allene 4a in a 1:1 Molar Ratio. A solution of $4 \mathrm{a}(5.40 \mathrm{~g}, 23.0 \mathrm{mmol})$ and $5(5.20 \mathrm{~g}, 23.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(470 \mathrm{~mL})$ was refluxed for 32 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with toluene-AcOEt (4/1) as eluent. The first fraction gave $1.60 \mathrm{~g}(10 \%)$ of 5 -[(2 -acetylamino)-phenyl)sulfonyl]-3,3'-bis(3,5-dichloro-2,4,6-trimethylphenyl)-4,5'-spirobis(4,5-dihydroisoxazole) (9a). Mp: $270^{\circ} \mathrm{C}$ (from hexanebenzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.89(6 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 2.40$ $(3 \mathrm{H}, \mathrm{s}), 2.47(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s}), 3.23,4.57(2 \mathrm{H}$, AB type, $J=19.0 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{s}), 7.10-7.40(1 \mathrm{H}, \mathrm{m}), 7.60-$ $7.90(1 \mathrm{H}, \mathrm{m}), 7.90-8.10(1 \mathrm{H}, \mathrm{m}), 8.60-8.80(1 \mathrm{H}, \mathrm{m}), 9.50(1 \mathrm{H}$, br s). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 17.2(\mathrm{q}), 19.1$ (q), 19.6 (q), 25.1 (q), 40.9 (t), 97.3 (d), 99.8 (s), 122.7-139.8, 157.6 (s), 157.8 (s$), 168.4$ (s). IR (Nujol) 3400, $1700 \mathrm{~cm}^{-1}$. MS m/e: 695 (M). Anal. Caled for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 53.38 ; \mathrm{H}, 4.19 ; \mathrm{Cl}, 20.33 ; \mathrm{N}, 6.02 ; \mathrm{S}, 4.59$. Found: C, $53.21 ; \mathrm{H}, 4.07 ; \mathrm{Cl}, 20.22, \mathrm{~N}, 5.90 ; \mathrm{S}, 4.41$. The second fraction contained 1.50 g (14%) of 6 a (vide infra). The third fraction contained $2.36 \mathrm{~g}(22 \%)$ of 5 -[[(2-(acetylamino)phenyl)-sulfonyl]methyl]-3-(3,5-dichloro-2,4,6-trimethylphenyl)isoxazole (7a). Mp: $206{ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.09(6 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}), 2.58(3 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{s})$, $6.11(1 \mathrm{H}, \mathrm{s}), 7.00-7.30(1 \mathrm{H}, \mathrm{m}), 7.50-7.80(2 \mathrm{H}, \mathrm{m}), 8.50-8.70$ ($1 \mathrm{H}, \mathrm{m}$), 9.50 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$). IR (Nujol) $3360,1700 \mathrm{~cm}^{-1}$. MS m/e: $466(\mathrm{M})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 53.97 ; \mathrm{H}, 4.31$; Cl, 15.17; N, 5.99; s, 6.86. Found: C, 54.11; H, 4.40; Cl, 15.23; $\mathrm{N}, 6.10 ; \mathrm{S}, 6.94$. The fourth fraction was chromatographed on a silica gel column with $\mathrm{Et}_{2} \mathrm{O}$-light petroleum ether (1/1) as eluent, obtaining 2.79 g (26%) of $4-[[(2$-(acetylamino)phenyl)-sulfonyl]methyl]-3-(3,5-dichloro-2,4,6-trimethylphenyl)isoxazole (8a). Mp: $177{ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.02(6 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 3.93(2 \mathrm{H}, \mathrm{s}), 7.10-7.30(1 \mathrm{H}$, $\mathrm{m}), 7.50-7.80(2 \mathrm{H}, \mathrm{m}), 8.40-8.50(1 \mathrm{H}, \mathrm{m}), 8.57(1 \mathrm{H}, \mathrm{s}), 9.20(1 \mathrm{H}$, br s). IR (Nujol) $3230,1650 \mathrm{~cm}^{-1}$. MS (m / e : 466 (M). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 53.94 ; \mathrm{H}, 4.31 ; \mathrm{Cl}, 15.17$; $\mathrm{N}, 5.99$; $\mathrm{S}, 6.86$. Found: C, $53.78 ; \mathrm{H}, 4.36 ; \mathrm{Cl}, 15.22 ; \mathrm{N}, 6.11 ; \mathrm{S}, 7.00$.

1-[2-((Acetylamino)phenyl)sulfonyl]-2-propanone (13). A solution of $4 \mathrm{a}(1.00 \mathrm{~g}, 4.2 \mathrm{mmol})$ in $\mathrm{EtOH}(42 \mathrm{~mL})$ was refluxed for 18 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with AcOEt-light petroleum ether (3/1) as eluent, obtaining 110 $\mathrm{mg}(10 \%)$ of 13. $\mathrm{Mp}: 96{ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.22(3 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{s}), 7.21-7.26(1 \mathrm{H}$, $\mathrm{m}), 7.60-7.66(1 \mathrm{H}, \mathrm{m}), 7.82-7.86(1 \mathrm{H}, \mathrm{m}), 8.44-8.49(1 \mathrm{H}, \mathrm{m})$, $9.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \operatorname{IR}$ (Nujol) $1740 \mathrm{~cm}^{-1}$. MS m/e: 257 (M). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$: C, 51.75; H, 5.13; N, 5.49; S, 12.56 . Found: C, 51.89; H, 5.20; N, 5.44; S, 12.73 .

Reaction of 5 with Ketone 13. A solution of $5(2.00 \mathrm{~g}, 8.7$ $\mathrm{mmol})$ and $13(2.22 \mathrm{~g}, 8.7 \mathrm{mmol})$ in EtOH (350 mL) was treated with 0.2 M ethanolic $\mathrm{NaOH}(3.5 \mathrm{~mL}$) and refluxed for 30 min . The solvent was partly removed under reduced pressure, and the residue was taken up with $\mathrm{Et}_{2} \mathrm{O}$, washed with water, and dried over sodium sulfate. After evaporation of the solvent, the residue was chromatographed on a silica gel column with benzene-AcOEt (4/1) as eluent to give $2.47 \mathrm{~g}(61 \%)$ of 4 -[(2-(acetylamino)phenyl)sulfonyl]-3-(3,5-dichloro-2,4,6-trimethyl-phenyl)-5-methylisoxazole (6a). Mp: $273{ }^{\circ} \mathrm{C}$ (from hexanebenzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.74(6 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 2.60$ (3H, s), 3.05 ($3 \mathrm{H}, \mathrm{s}$), $6.80-7.10(1 \mathrm{H}, \mathrm{m}), 7.20-7.70(2 \mathrm{H}, \mathrm{m}), 8.40-$ $8.60(1 \mathrm{H}, \mathrm{m}), 9.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \operatorname{IR}$ (Nujol) $3360,1705 \mathrm{~cm}^{-1}$. MS m/e: 466 (M). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 53.97 ; \mathrm{H}$, $4.31 ; \mathrm{Cl}, 15.17$; N, $5.99 ; \mathrm{S}, 6.86$. Found: C, $53.79 ; \mathrm{H}, 4.40 ; \mathrm{Cl}$, 15.23; N, 6.09; S, 7.00.

Reaction of 5 with Allene 4a in a 2:1 Molar Ratio. A solution of $4 \mathrm{a}(3.00 \mathrm{~g}, 12.7 \mathrm{mmol})$ and $5(5.82 \mathrm{~g}, 25.4 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(130 \mathrm{~mL})$ was refluxed for 24 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with $\mathrm{Et}_{2} \mathrm{O}$ as eluent. First fractions contained $706 \mathrm{mg}(8 \%)$ of $\mathbf{9 a}$. Subsequent fractions contained $650 \mathrm{mg}(11 \%)$ of $6 \mathrm{a}, 1.72 \mathrm{~g}(29 \%)$ of 7 a , and 1.48 g (25%) of $8 \mathbf{a}$. Further elution allowed for isolation of $88 \mathrm{mg}(1 \%)$ of 4-[(2-(acetylamino)phenyl)sulfonyl]-3,3'-bis(3,5-dichloro-2,4,6-trimethylphenyl)-5, 4^{\prime}-spirobis(4,5-dihydroisoxazole) (10). Mp: $265{ }^{\circ} \mathrm{C}$ dec (from hexane-diisopropyl ether). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 0.93(3 \mathrm{H}, \mathrm{s}), 2.19(3 \mathrm{H}, \mathrm{S}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.44(9 \mathrm{H}, \mathrm{s}), 2.54(3 \mathrm{H}$, s), $4.94(1 \mathrm{H}, \mathrm{s}), 5.00,5.65(2 \mathrm{H}, \mathrm{AB}$ type, $J=12.0 \mathrm{~Hz}), 6.70-$ $7.00(1 \mathrm{H}, \mathrm{m}), 7.20-7.40(2 \mathrm{H}, \mathrm{m}), 8.20-8.40(1 \mathrm{H}, \mathrm{m}), 9.10(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 12.5-29.2,25.2$ (q), 73.3 (d), 73.4 (t), 99.8 (s), 119.5-137.7, 149.0 (s), 154.3 (s), 167.8 (s). IR (Nujol) $3450,1720 \mathrm{~cm}^{-1}$. MS m/e: 695 (M). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: \quad \mathrm{C}, 53.38 ; \mathrm{H}, 4.19 ; \mathrm{Cl}, 20.33 ; \mathrm{N}, 6.02 ; \mathrm{S}, 4.59$. Found: C, 53.22 ; H, 4.24; Cl, 20.37; N, 6.11; S, 4.70.

Reaction of 5 with Allene 4a in a $4: 1$ Molar Ratio. A solution of $\mathbf{4 a}(2.50 \mathrm{~g}, 10.5 \mathrm{mmol})$ and $5(9.71 \mathrm{~g}, 42.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(105 \mathrm{~mL})$ was refluxed for 18 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with $E t_{2} \mathrm{O}$ as eluent. The following products was isolated in order of elution: $9 a(580 \mathrm{mg}$, $8 \%), 10(1.02 \mathrm{~g}, 14 \%), 6$ ($290 \mathrm{mg}, \mathbf{9 \%}$), $\mathbf{7 a}(1.81 \mathrm{~g}, 37 \%), 8 \mathrm{a}$ ($490 \mathrm{mg}, 10 \%$).

Reaction of $\mathbf{1 0}$ with Triethylamine. A solution of 10 (200 $\mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.93 \mathrm{~g}, 29.0 \mathrm{mmol})$ in benzene (40 mL) was refluxed for 1 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}(3 / 1)$ to give $28 \mathrm{mg}(45 \%)$ of nitrile 15^{22} followed by 63 mg (45%) of 4 -[(2 -(acetylamino)-phenyl)sulfonyl]-3-(3,5-dichloro-2,4,6-trimethylphenyl)-5-meth-
ylisoxazole (14). Mp: $244{ }^{\circ} \mathrm{C}$ (from diisopropyl ether). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.69(6 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}, \mathrm{s}), 2.55(3 \mathrm{H}, \mathrm{s}), 3.29(1 \mathrm{H}, \mathrm{t}, J$ $=7.5 \mathrm{~Hz}), 5.18(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.96-7.02(1 \mathrm{H}, \mathrm{m}), 7.35-$ $7.43(1 \mathrm{H}, \mathrm{m}), 7.54-7.59(1 \mathrm{H}, \mathrm{m}), 8.50-8.56(1 \mathrm{H}, \mathrm{m}), 9.20(1 \mathrm{H}$, br s). IR (Nujol) $3330,1690 \mathrm{~cm}^{-1}$. MS m/e: 482 (M). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C, $52.18 ; \mathrm{H}, 4.17 ; \mathrm{Cl}, 14.67 ; \mathrm{N}, 5.80$; S, 6.63. Found: C, $52.00 ; \mathrm{H}, 4.12$; Cl, 14.74; N, 5.88; S, 6.66 .
Reaction of 5 with Allene 4b in a 1:1 Molar Ratio. A solution of $4 \mathrm{~b}(5.00 \mathrm{~g}, 19.9 \mathrm{mmol})$ and $5(4.64 \mathrm{~g}, 20.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(200 \mathrm{~mL})$ was refluxed for 48 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with $\mathrm{Et}_{2} \mathrm{O}$ as eluent. First fractions gave 3.73 g (39%) of 5 -[1-[(2-(acetylamino)pheny)-sulfonyllethyll-3-(3,5-dichloro-2,4,6-trimethylphenyl) isoxazole (7b). $\mathrm{Mp}: 153{ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.85$ $(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.06(6 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.53(3 \mathrm{H}, \mathrm{s}), 4.63$ $(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{s}), 7.13-7.34(1 \mathrm{H}, \mathrm{m}), 7.60-7.69$ $(2 \mathrm{H}, \mathrm{m}), 8.54-8.59(1 \mathrm{H}, \mathrm{m}), 9.56(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. IR (Nujol) 3375 , $1710 \mathrm{~cm}^{-1}$. MS m/e: 480 (M). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22}$ $\mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 54.89 ; \mathrm{H}, 4.68 ; \mathrm{Cl}, 14.73 ; \mathrm{N}, 5.82 ; \mathrm{S}, 6.66$. Found: C, $54.76 ; \mathrm{H}, 4.51$; Cl, 14.90 ; N, 5.99 ; S, 6.74. Subsequent fractions contained 850 mg (6%) of 5 -[(2-(acetylamino)phenyl)-sulfonyl]-5-methyl-3, 3^{\prime}-bis(3,5-dichloro-2,4,6-trimethylphenyl)-$4,5^{\prime}$-spirobis(4,5 -dihydroisoxazole) (9b). $\mathrm{Mp}: 270^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-$ $\left.\mathrm{Me}_{2} \mathrm{CO}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.83(9 \mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.44$ $(3 \mathrm{H}, \mathrm{s}), 2.49(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 2.60(3 \mathrm{H}, \mathrm{s}), 3.28,4.49(2 \mathrm{H}$, AB type, $J=19.5 \mathrm{~Hz}), 7.25-7.31(1 \mathrm{H}, \mathrm{m}), 7.70-7.75(1 \mathrm{H}, \mathrm{m})$, $7.91-7.95(1 \mathrm{H}, \mathrm{m}), 8.63-8.68(1 \mathrm{H}, \mathrm{m}), 9.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 11.8-26.3,41.7$ (t), 100.4 (s), 102.9 (s), 120.6-138.5, 157.8 (s), 158.5 (s), 168.5 (s). IR (Nujol) $3405,1726 \mathrm{~cm}^{-1}$. MS m/e: 709 (M). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{C}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 54.02 ; \mathrm{H}$, 4.39 ; Cl, 19.93; N, 5.91; S, 4.51. Found: C, 54.16; H, 4.47; Cl, 20.08; N, 6.02; S, 4.59. Further elution gave $300 \mathrm{mg}(5 \%)$ of 11 b (vide infra) and $200 \mathrm{mg}(5 \%)$ of $12 .{ }^{23}$
Reaction of 5 with 2-Butyn-1-ol. A solution of $5(500 \mathrm{mg}$, 2.2 mmol) and 2 -butyn-1-ol ($145 \mathrm{mg}, 2.2 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was refluxed for 24 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column with $\mathrm{Et}_{2} \mathrm{O}$ as eluent, obtaining 236 mg (36%) of 4 -(hydroxymethyl)-3-(3,5-dichloro-2,4,6-trimethylphenyl)-5methylisoxazole (11). Mp: $146{ }^{\circ} \mathrm{C}$ (from hexane-benzene). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.14(6 \mathrm{H}, \mathrm{s}), 2.55(3 \mathrm{H}, \mathrm{s}), 2.58$ ($3 \mathrm{H}, \mathrm{s}$), 4.27 ($2 \mathrm{H}, \mathrm{s}$). IR (Nujol) $3430 \mathrm{~cm}^{-1}$. MS m/e: 299 (M). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{2}: \mathrm{C}, 56.02 ; \mathrm{H}, 5.04 ; \mathrm{Cl}, 23.62 ; \mathrm{N}$, 4.66. Found: C, 56.16 ; H, 5.11; Cl, 23.71; N, 4.79 .

Acknowledgment. Thanks are due to MURST (Rome) for financial support.

[^4]
[^0]: (1) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; Wiley-Interscience: New York, 1984; p 317.
 (2) Confalone, P. N.; Earl, R. A. Tetrahedron Lett. 1986, 27, 2695.
 (3) Torssell, K. B. G. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis; VCH Publishers: New York, 1988; p 271.
 (4) (a) Padwa, A.; Matzinger, M.; Tomioka, Y.; Venkatramanan, M. K. J. Org. Chem. 1988, 53, 955. (b) Padwa, A.; Bullock, W. H.; Kline, D. N.; Perumattam, J. J. Org. Chem. 1989, 54, 2862. (c) Padwa, A.; Bullock, W. H.; Norman, B. H.; Perumattam, J. J. Org. Chem. 1991, 56, 4252. (d) Padwa, A.; Meske, M.; Ni, Z. Tetrahedron Lett. 1993, 32, 5047.
 (5) (a) Broggini, G.; Bruché, L.; Zecchi, G.; Pilati, T. J. Chem. Soc., Perkin Trans. I 1990, 533. (b) Broggini, G.; Zecchi, G. J. Chem. Soc., Perkin Trans. I 1991, 1843. (c) Broggini, G.; Molteni, G.; Zecchi, G. J. Chem. Res. 1993, (S) 398, (M) 2649.
 (6) (a) Dolbier, W. R., Jr.; Purvis, G. D.; Seabury, M. J.; Wichs, G. E.; Burkholder, C. R. Tetrahedron 1990, 46, 7991. (b) Dolbier, W. R., Jr. Acc. Chem. Res. 1991, 24, 63.
 (7) Padwa, A.; Craig, S. P.; Chiacchio, U.; Kline, D. N. J. Org. Chem. 1988, 53, 2232.
 (8) (a) Barbarella, C.; Cinquini, M.; Colonna, S. J. Chem. Soc., Perkin Trans. I 1980, 1646. (b) Guilford, A. J.; Turner, R. W. J. J. Chem. Soc., Chem. Commun. 1983, 466. (c) Carr, R. V. C.; Williams, R. V.; Paquette, L. A. J. Org. Chem. 1983, 48, 4976.
 (9) De Lucchi, O.; Modena, G. Tetrahedron 1984, 40, 2585 and references cited therein.
 (10) Hayakawa, K.; Nishijama, H.; Kanematsu, K. J. Org. Chem. 1985, 50, 512.
 (1i) Bruché, L.; Gelmi, M. L.; Zecchi, G. J. Org. Chem. 1985, 50, 3206.

[^1]: (12) Grünanger, P.; Vita-Finzi, P. Isoxazoles; Wiley-Interscience: New York, 1991; p 24.
 (13) Ballabio, M.; Dalla Croce, P.; Massari, V.; Pocar, D.; Riva, A.; Trimarco, P. J. Chem. Res. 1983, (S) 140, (M) 1317.

[^2]: (14) De Benedetti, P. G.; Quartieri, S.; Rastelli, A.; De Amici, M.; De Micheli, C.; Gandolfi, R.; Gariboldi, P. J. Chem. Soc., Perkin Trans. De Micheli,
 II 1982, 95.
 (15) Barzaghi, M.; Beltrame, P. L.; Dalla Croce, P.; Del Buttero, P.; Licandro, E.; Maiorana, S.; Zecchi, G. J. Org. Chem. 1983, 48, 3807.

[^3]: (16) (a) Müller, C.; Schweig, A.; Mock, W. L. J. Am. Chem. Soc. 1974, 96, 280. (b) Müler, C.; Schweig, A.; Vermeer, H. J. Am. Chem. Soc. 1975, 97, 982.
 (17) Caramella, P.; Albini, E.; Bandiera, T.; Corsico Coda, A.; Grünanger, P.; Marinone Albini, F. Tetrahedron 1983, 39, 689.
 (18) Bradamante, S.; Pagani, G. A. J. Chem. Soc., Perkin Trans. II 1986, 1035.
 (19) Garanti, L.; Locatelli, A.; Zecchi, G. J. Heterocycl. Chem. 1976, 13,657.
 (20) Beltrame, P.; Veglio, C.; Simonetta, M. J. Chem. Soc. B 1967, 867.
 (21) Black, D. K.; Landor, S. R.; Patel, A. N.; Whiter, P. F. J. Chem. Soc. C 1967, 2260.

[^4]: (22) Beltrame, P.; Beltrame, P. L.; Filippi, A.; Zecchi, G. J. Chem Soc., Perkin Trans. II 1972, 1914.
 (23) Pappalardo, G. Gazz. Chim. Ital. 1963, 93, 630.

